New half-discrete Hilbert inequalities for three variables

نویسندگان

  • Tserendorj Batbold
  • Laith E. Azar
چکیده

In this paper, we obtain two new half-discrete Hilbert inequalities for three variables. The obtained inequalities are with the best constant factor. Moreover, we give their equivalent forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function

By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...

متن کامل

A New Multiple Half–discrete Hilbert–type Inequality

By using the way of weight functions and technique of real analysis, a new multiple half-discrete Hilbert-type inequality with the best constant factor is given. As applications, the equivalent forms, operator expressions as well as some reverse inequalities are also considered. Mathematics subject classification (2010): 26D15, 47A07.

متن کامل

On More Accurate Reverse Multidimensional Half–discrete Hilbert–type Inequalities

By using the methods of weight functions and Hermite-Hadamard’s inequality, two kinds of more accurate equivalent reverse multidimensional half-discrete Hilbert-type inequalities with the kernel of hyperbolic cotangent function are given. The constant factor related to the Riemann zeta function is proved to be the best possible. Mathematics subject classification (2010): 26D15, 47A07, 37A10.

متن کامل

extend numerical radius for adjointable operators on Hilbert C^* -modules

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

متن کامل

Recent Developments of Hilbert-Type Discrete and Integral Inequalities with Applications

This paper deals with recent developments of Hilbert-type discrete and integral inequalities by introducing kernels, weight functions, and multiparameters. Included are numerous generalizations, extensions, and refinements of Hilbert-type inequalities involving many special functions such as beta, gamma, logarithm, trigonometric, hyper-bolic, Bernoulli’s functions and Bernoulli’s numbers, Euler...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2018  شماره 

صفحات  -

تاریخ انتشار 2018